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Charge collected by diffusion from ion tracks in a semiconductor substrate maybe

influenced by the substrate diffusion length, which is related to recombination losses. A

theoretical analysis shows that, excluding some extreme cases, charge collection is

insensitive to spatial variations in the difl-usion  length function, so it is possible to define an

efkctivc  difllsion  length  having the propcr(y  that collected charge can be approximated

by assuming a uniform diffllsion length  equal to this cflcctivc value. llxtrcmc cases that

must be excluded are those in which a large number of recombination centers aw confinccl

to a narrow region near the substrate boundary.
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lnsti(utc  of I’cchnology,  under a contract with the National Aeronautics and Space Administration, and
s.upporlcd  by NASA C.odc-Q R’J’OP funding
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1. ~tlgchlclion

Measurements of charge collcctcd  by epi SRAMS from ion tracks were compared to a

model prediction [1]. The model predicts collected charge to consist of the charge

liberated in the epi layer, plus an additional contribution that diffuses to the epi from the

heavily doped substrate below. The Iattcr charge is controlled by the substrate difhsion

length, which is related to losses from rcco~nbination centers (RCS), and the model

calculates this charge from the “uniform approximation” which assun~cs  a spatially

uniform effective diffusion length. The model predictions fit t}m data very well for both

virgin devices and devices that had a greatly reduced diffllsion length as a result of

extensive exposure to heavy ion irradiation. The excellent agreement may be somewhat

surprising because the actual difilsion ]cngth fllnction is likely to be spatially nonuniform

(particularly in a heavily irradiated device having a reduced diflusion length) due to a

nonuniform distribution of RCs, yet the same effective value accurately j~redicts  collected

charge fi-orn any ion track, long or short. ‘1’hc experimental data tend to validate the

uniform approximation, but no theory was given to explain how this can bc.

‘l’he present paper provides a theoretical explanation. The analysis will show that,

excluding some extreme cases, charge collection is insensitive to spatial variations in the

RC distribution, even when these variations are large. Different distributions that result in

the same collected charge from tracks that arc effectively infinitely long, also result in

approximate cl y the same collected charge from any track, long or short, ‘1 ‘he uniform

approximation using an appropriately chosen effective diffusion length will be shown to be

a ~-casonab]y  good approximation for all but the most extreme cases.
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It should be noted that there are extreme theoretical cases such that the uniform

approximation fails, Although such cases arc not relevant to the experimental observations

discussed above, they may become relevant under some other circumstances, so it is

important to note that the uniform approximation has limitations. IIoth types of cases



(those in which the approximation works well, and t}lose in which it does not) arc first

discussed in Section 3 and then illustrated by examples in Section 4.

‘l’he conclusions to follow are derived from the assumption that the linear track density

(charge density per unit dis(ancc) is uniform over a finite track length. ‘I’he actual density

is not uniform, particularly when the track is short enough so that collected charge

depends on track length. This is a weakness of the present analysis because variations in

the track density will change quantitative results. It is postulated that such chatlges in

quantitative results will not be large enough to change the qualitative conclusions that

follow. This postulate is at least credible, and is consistent with the experimental

observations discussed earlier.

2. ~’ernlinologyatld  .Stalgtnenl of the Prob!em

‘1’}Ic assumed physical arrangement consists of a device substrate containing an ion track

which extends from the upper substrate surface to a depth equal to the track length.

‘l’he upper substrate boundary is assumed to be an infinite plane which is a sink for

minority carriers. The substrate is assumed to be infinitely thick, although the analysis in

the appendix also treats finite thicknesses. The linear track density is assumed to be

uniform over the track length, so t}~e track is complcte]y  described by two parameters,

which are the track ]ength and the linear density. Charge that reaches the upper surface via

diflltsion fioJn the track is detcrJnincd  by the two track parameters and by the substrate

diffusion ]ength function which describes rec@mbiJ)ation ]osses in the substrate. ‘1’he

difillsioJl  ]cJlgt}~ fuJ~ction  is assuJncd to be ]atcral[y uniform, but Jnay be highly J~oJmnifornl

in the vettical  coordiJlate  due to a J~onuJ~iforn)  R( density.

“1’hc uJlifornl  approxinlatioJ~  estimates collected c}large by assuJniJlg soJne appropJ-iately

sclectcd  uniform diffusion length. “l’he objective is to use difl”LlsioJl  theory to show that this

approxiJnation  can, soJnetinm, provide a rcasoJ)ably accurate cstinlate,  even W]ICJ)  the
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actual diflusion length fimction  is highly nonuniform. The uniform approximation will

obviously produce correct results if appropriate, and possibly diflerent,  uniform diffbsion

lengths are assumed for different ion tracks. ‘l’he objective is to show that reasonably

accurate estimates can be obtained for any ion track when the same effective diffllsion

length  is assumed for all cases. Let Q(z) denote collected charge when the track length is

z. The objective is to show that there is an effective diilhsion  length having the property

that the uniform approximation produces a reasonably accurate estimate of Q(z) for any z

bctwccn O and m.

The linear track density implicitly contained in Q(z) is superfluous when investigating the

adequacy of the uniform approximation. It is convenient to define a normalized Q, which

is denoted l(z) and defined to be Q(ii) divided by the linear track density. Note that l(z)

has the dimensions of distance. The quantity l(m) has a special significance because it has

two interpretations. The first interpretation is immediately implied by its definition; it is the

normalized c}~arge  collected from an infinitely long track. Note that for the special case of

a uniform diffusion length, the normalized charge collected from an infinitely long track

equals the diflhion length. Therefore the second interpretation of l(m) is aJl cflcctive

diffhsion length. It is the value that must be assigned to the effective diflusion length  in

order for the uniform approximation to correctly predict collected charge from an

infinitely long track, in fact, l(m) is t}~e  effective difllsion  length that will be used with the

uniform approximation in all discussions to follow, This choice for the efiective  diffbsion

length insures that the uniform approximation will be accurate w}mnevcr the track is

sufllciently  long. But it is still  not clear how long is “suflcicntly  long”, or how good the

approximation is when the track is not suficicntly long. These questions arc answered in

the following sections.
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3. Upper and I_,_o.w@3~d!

IIecause l(m) has a dual interpretation, it is sometimes a convenient unit for measuring

both the dependent variable l(z) and the independent variable z, i.e., it is sometimes

convenient to plot the dimensionless parameter l(z)/l(co) against the dimensionless

parameter z~l(m).  The first parameter is interpreted as the charge collected from a track of

length z divided by the charge collected from the infinitely long track, while the second is

interpreted as the track length  divided by the effective diflusion length. l’he uniform

approximation is expressed in terms of these dimensionless parameters as

l(z)
-i(m) ()~(m) (Iulijornl opproxinmfion).= 1- exp –---z -- (1)

It is shown in the appendix that, no matter what

upper bound for the actual l(z)/1 (m) is given by

the actual diffusion length  fllnction  is, an

I ‘-
z

[

l z - 2

)(m)  - 4 “  I(m)_
ly ---z <2

I(z)
l(m)

](mj <

IIy-z 22.
l(w)

(2)

I]nforlunate]y,  there is no universal lower bound, except zero. 3’o obtain a nontrivial lower

bound, it is necessary to impose a constraint that limits the diflusion length  fhnctions  that

may be considered. ‘l’he type of constraint that is convenient from the point of view of

analysis is to stipulate that less than some specified fractioJl of collected charge may come

fi-om depths exceeding some specified multiple of the e~cctivc  diflision  length. I/or

example, we might consider the diffhsion length functions satisfying the constraint



I.ess than 10% CIJ the charge coIIcctedJrorn the
injhitely long track is front  depths exceeding
Jolir times the eflective dijjision  lengh

It is shown in the appendix that a lower bound for any l(z)/l(co) consistent with this

constraint is given by

(3)
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(4)

Plots of the right sides of(1), (2), and (4) are shown in Figure  1. I’his paper calls a 20’%0

error “reasonably good”, so agreement between the upper bound and the uniforJn

approximate ion is reasonably good. This implies that agreement bet wccn the uniform

approximation and any actual curve that is above this approximation must also be

seasonably good, because any such curve is bracketed between the uniform approximation

and the upper bound. But agreement bctwccn  the uniform approximation and the lower

bound is not as good. lfthe constraint (3) is relaxed to include a larger class ofdiffllsion

length flmctions, the lower bound becomes lower and agrccmcnt becomes worse. ‘l’he

uniform approximation fails badly when the actual curve approximates the lower bound

corresponding to a constraint that is more relaxed than (3).

It is unfortunate that there are cases such that the uniform approximation does not work

well. It can be shown that such cases arc produced when a very large number of RCs arc

confined to a very narrow region that is very close to the upper surface, But the

approximation is reasonably good under all other conditions. For example, if a very large

number of RCS are confined to a very narrow region, but this region is at a depth of at

least three }~alves  ofthc  effective difiusion length, the actual curve will resemble the upper

bound in }~igure 1, w}~ich is fairly close to the uniform approximation. The approximation
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becomes even better for the less extreme cases in which the RC density is spread out to

the extent that the density does not vary by more than a factor of a few (e.g., 5 or less).

l~or these cases, the actual curve will look more like the uniform approximation than either

bound shown in Figure 1. ‘1’hcse statements arc illustrated by numerical examples in the

next section.

4.  N~lt~leri_cal_13xatjlples

‘1’hc statements at the end of the previous section can be illustrated by numerical

examples representing some actual measured data that were discussed at the beginning of

Section 1. ‘J’he heavily irradiated devices }~aving  reduced diflhsion  lengths are the most

interesting because they arc likely to have the greatest nonuniformity in the RC density.

Charge  collection measurements found the dl’cctivc  difllrsion length  to be about 2 pm for

these devices, The virgin devices were found to have an cficctivc  diffusion length of about

10 pm. ‘J’here was sufficient evidence that this difference between diffusion lengths is not

due to random part-to-part variations, so it is assumed that the irradiated devices had a 10

pm difflnion  length prior to irradiation. Other than constraints imposed by this

information, it is not known what the spatial distribution of the post-irradiated RC density

is. We will consider a sampling of all possible distributions consistent with the measured

data and compare the exact l(z), corrcspondit]g  to an assumed distribution, to the uniform

approximation for each case. ‘J’hc reciprocal oft}w diffllsion length function, whic}l is a

measure of the RC density, is assumed to be a blip (possibly narrow or possibly broad)

representing a (possibly localized or possibly spread-out) RC distribution produced by

irradiation damage. The asymptotic (large depth) value ofthc diffusion length  function is

assumed to be the prc-irradiated value. ‘]”hc mathematical form ofthc diffusion length

fllnction,  w}lich  was selected primarily on the basis of analytical tractability, is deferred to

the appendix because the qualitative characteristics shown in the figures discussed later arc

probably more relevant than mathematical expressions.



We consider a sampling of all possible diffusion length fllnctions  which are described by

the equations in the appendix, have the asymptotic value of 10 }un, and are consistent

with 1(m)= 2 ym. The sampling is worst-case from the point of view of demonstrating

adequacy of the uniform approximation. This is accomplished by making the blip width as

narrow as possible (within limits stated below), to obtain the greatest possible

nonuniformity consistent with the stated conditions. Depending on the location of the blip

center, an arbitrarily narrow blip may be mathematically compatible with the stated

conditions if the blip amplitude is correspondingly large. This occurs when the blip is

su~lcient]y  close to the surface. When this is the case, the blip width is taken to be about 1

pm because this is sufficiently close to the n~athcrnatical  limit (the blip approximates a

Dirac delta function). But if the blip center is su~ciently  deep, it is no longer true that an

arbitrarily narrow blip can satisfy the condition that l(m) =- 2 ~ml.  Some spread is required

so that the RC density extends to higher locations. When this is the case, the blip width is

selected to be the smallest value such that the condition can be satisfied. It can be shown

that the demarcation between these cases occurs when the blip ccntcr  depth is

approximately twice the effective diffusion length (or 4 pm for the examples to follow).

I’hc approximation is accurate when recombination from the RCS outside and above the

blip can be neglected. ~’he sampling will usc a 1 pm blip width (approximately) if the blip

center is at a depth less than 4 pm, and the minimum allowed blip width for larger depths.

Note that the shallow blips could be excluded on the basis ofrclcvancy  to the measured

data, because a shallow and narrow blip could only bc produced by damaging ions that

stop near the top ofthc device. ‘l’he damage in the parts considered was produced by iom

having much longer  ranges. ]lxc]uding  the narrow and shallow blips will give a much more

favor-able impression regarding the adequacy of the uniform approximation, But such

cases may be relevant under other circumstances and it may bc important to know that the

uniform approximation does not always work well. Therefbre  the sampling inc]udcs  sL]ch

cases even though they are not relevant to the measured data.



The sampling is shown in Figures 2 through 6. Each figure presents an assumed RC

distribution, measured in terms of the reciprocal of the diflision length  function 1,Ij, and

compares different predictions ofthc normalized collected charge 1. The z in 1,1)(z) is

interpreted as depth, while the z in l(z) is interpreted as track length. Each 1 curve

identified as “exact” was calculated from the exact equation describing the assumed 1,1)

function.

The exact curve in Figure 2 resembles the uniform approximation when z is less than 1

pm because this places the track above the blip. But the exact curve is approximately

linear and far below the uniform approximation for larger z. in fact, the exact curve in

l;igure  2 is even lower, at the larger values of z, than the lower bound shown in };igure  1.

‘]’his  is because the exact curve in Figure  2 violates the constraint (3) that applies to the

lower bound in Uigure 1. lfthe  blip is moved higher than the 1 pm depth, the point where

the exact curve and uniform approximation diverge in I;igure 2 will move further to the

lcfl, and the exact curve will approximate the lower bound corresponding to a constraint

that is much more relaxed than (3). Such small blip depths are the problem cases in which

the uniform approximation fails badly. IIut the approximation bccornes  better as the blip is

moved down. It is still not very good in Figure  3, but is reasonably good in Figures 4 and

5. Note that the exact curve in Figure 5 resembles the upper bound in l;igure  1. The blip in

l’igure 5 is as deep as it can bc without increasing the blip width. It is impossible for l(m)

to bc as small as 2 pm unless the blip adds some RCS to the region above the 4 pm depth.

A blip dccpcr than 4 }ml implies that there must be some spread such as shown in }Jigurc

6, Now that some spread is present, the uniform approximation becomes quite good.

Although there is some spread, the RC density is still very nonuniform. It is therefore

rather impressive that the uniform apj~roximation works so WCII.

If the trend started by Figurw 2 through 6 is continued beyond  l~igure 6, the RC density

bccomcs  progressively more uniform and the uniform approximation bccomcs

progrcssivc]y  better. Even Uigure 6 probably did not carry the trend far enough to

represent the actual test devices. I’hc uniform approximation is probably even more
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accurate, for the RC distribution in the actual devices, than indicated in Figure 6. ‘l’his

explains the successful application of the model discussed at the beginning of Section 1

5.  ~onc1\lsign5

Accuracy of the uniform approximation was theoretically investigated for the case in

which the effective diffusion length used in the approximation is set equal to the charge

collected by the infinitely long track divided by the linear track density. It was found that

the approximation does not always work well. It fails badly when a large number of RCs

arc confined to a narrow region at a depth less than three }]alves of the effective difhsion

length. But when such extreme cases are excluded, charge collection is insensitive to

spatial variations in the RC distribution (subject to the important qualification that all

distributions being compared produce the same effective diffusion length), and the uniform

approximation ranges from reasonably good to excellent. “]”he approximation is very good

for the type of RC distribution that is expected in some actual devices, and this is the

theoretical explanation for the successfl]l application of the model discussed at the

beginning of Section 1.

A 1. An Expression for ](7.)

We eventually consider substrates that are effectively infinitely thick, but it is convenient

to start with a finite thickness 1, and take a limit later. ‘1’he substrate is imagined to lie

between two infinite planes which arc both sinks for minolity  carriers, It was shown [2]

that the amount of charge Q reaching the upper plane via diffllsion flom an ion track can

bc calculated from



where PI is the initial track density (charge per unit volume) and Cl is the charge-collection

e~lcicncy.  The two coordinates <1 and <~ are lateral coordinates, while <is the

longitudinal coordinate. The charge-collection cfllciency  is calculated by solving the

boundary value problem

where f is the reciprocal ofthc difllusion length  function. It is assumed that fdcpends  only

on the longitudinal coordinate, so Cl depends only on the longitudinal coordinate.

Suppressing the superfluous coordinates, the ecluation  for Q becomes

d2Q(~
- y2 (() Q(Q jior 0< ( <1., Q(O)= 1, !2(1.) = o.——

d<2

integrating the equation for Q with respect to the lateral coordinates gives

(Al)

Q: j; p(<) Sl(Qd<

where p is the linear track density (charge per unit length) We consider the case where

this density is uniform over a track length z <1, so that p is a step fllnction.  It is zero when

~ > Z, and constant  w}~en  ~ < z. I)ividing  Q by this constant produces 1 which is calculated

from

(A2)
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A2. & Upp_C130uDd

When f is specified and ~ is known from (Al), l(z) can be calculated from (A2). But the

present objective is to obtain a bound for the ratio I(z)/1(1.) which can be derived when f is

not specified and f,l is not known. Such a bound can be obtained by replacing the

unknown Q on the right side of (A2) with an expression that still contains the unknown Cl,

but has some properties of Q built into it so that information can be extracted without

requiring that L? be solved. Such an expression can be obtained by converting (Al) into an

integral equation. integrating (Al ) twice and then using an integration by parls to change

the appearance of the result gives

I,Q(z) = 1. --z- J: G(z,4-)f2(o Q(43~4”

where the Circcn’s fllnction G is given by

[

(1.-2)( ~o<<sz<lj

G(z,() =

(r. -~z fo<z<[<l..

Substituting (A3) into (A2) and changing the order ofintcgration  gives

], ] (Z )=  (~. - Z / 2 )  Z - ~:~~(z,<)  9’2(<)  d<

where 11 and Y are defined by

(A3)

(A4)

(As)

yJ2 (()= ( y2’ (<) Q(o
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Note that (Al ) implies that Q is not negative anywhere, so Y2 is not negative anywhere.

Another property of V’2 can be derived by first differentiating (A3) and evaluating the

derivative at z = 1. to get

~ dQ(z)_
‘ dz z~l.

‘ J: Y’’(CDK  - 1 . (A6)

Note that (2(L) = O and Cl is not negative anywhere, so Q cannot be increasing in any

neighborhood of the point z = 1.. Therefore the clerivative  on the lefl side of(A6) cannot

be positive. Combining this observation with (A6) gives

(A7)

Another equation containing Y’2 is obtained by evaluating (A4) at z = I. while using (A5)

to get

(As)

An important property of 1 l(z,~), implied by (AS), is the type of curvature that it has

when plotted against ~ with z fixed. When ~ c (O,z), 11 is linear in ~. When CJ G (x,].), 11

has the curvature illmtrated in Figure A 1. ‘l’he 11 curve is convex when viewed from the

Ml, so it is bounded below by any tangent line, such as illustrated by the lower dashed line

in the figure (the upper dashed line is nccdcd in Section A3). Selecting any tangent line,

which is tangent to the 11 curve at ~ = any A c [z,l,], we have the bound



which applies to any ~ E [0,1.] and any A c [z,I.]. The right side of (A9) is the equation of

the tangent line, regarded as a function of~ with z fixed. Multiplying (A9) by Yz and

integrating and then using (A4), (A7), and (A8) to substitute for the integrals gives

l(z) < z + z [1p 1(1.). 2- If z E [0,1,] and A c [z, 1.]~2 ‘“ A (AIO)

which applies for any A c [z,].]. In particular, (Al O) applies when A =- z and we obtain

the obvious result l(z) < I(L), A stronger statement can be made when 7,< 21(1.) because

wc can then let A = 21(1.) and (A 10) becomes

-1

When the above inequality does not apply, wc still have l(z) < 1(1,), so the bound can be

cxprcsscd  as

[“”” [11 22 z>;1.) -4 ;(1.) If -

1(1,) <2
I(z)-.. .
1(1.) 5

lif .-2.- >2

1(1,) ‘-

(Al 1)

“1’he upper bound given by (Al 1) is the smallest upper bound that applies when no

restrictions arc imposed on the fhnction  f, q’his can be demonstrated by showing that the

bound is approached by a limiting case. ‘1’o demonstrate this, first note that the lefl side of

(A8) is not negative, so 21(I,) <1, (it can be seen from (Al) and (A2) that the equality

aJyiies  w}lcn  f= O everywhere). 3’hc limiting case occurs when f2(~) is a IIirac delta

fhnction centered at<=- 21(1,) and wit})  an infinite coefficient  selected so that a plot of

Cl(c) (satisfying (Al)) is a straight line connecting the point (C,Q) = (O, 1) to the point

14
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(21(1 .),0), and with Q(Q = O for ~ > 21(1,). A direct evaluation of l(z) from (A2) using this

K1 produces the right side of (Al 1).

The large 1, limit shown as (2) in Section 3 is obtained by simply replacing L with w in

(All).

~’he curvature of 1 I discussed in Section A2 and illustrated in Figure A 1 implies that 11 is

bounded by the chord connecting the end points (the upper dashed line in Figure Al). ~’his

.givcs the inequality

1. }1(2,<) < z (1. - z / 2)(I,  - ~ jior cdl z G [O, IJ] atd cdl ~ c [0, I,].

Multiplying this inequality by Y* and integrating and then using (A4) and (A8) to

substitute for the integrals gives

[

l@>2.y _ z - 2
;(L) - 1, >/-

jiw all z E [0, 1,]. (A12)

l’hc lower bound given by (A 12) is the smallest lower bound that applies when no

restrictions are imposed on the flmction f. I’his can be demonstrated by showing that the

bound is approached by a limiting case. Such a case occurs when f2(Q is a Dirac delta

tlmction centered at ~ =- 0+, and with a cocfllcicnt  selected so that a plot of Q(c)

(satisfying (Al)) first connects the point (~,f)) = (O, 1) to the point (0+,21(1,)/1.), and then

bccorncs  a straight line connecting the point (0+,21 (1.)/1,) to the point (1,,0). A direct

evaluation of l(z) from (A2) using this Q produces the right side of (Al 2).
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Note that the upper bound in (Al 1 ) and the lower bound in (A 12) come together when

the ratio 1./1( 1.) is C1OSC to the smallest allowed value (which is 2). “l’his could have been

anticipated from the fact that there is only onc possible f (zero) which can make 21(1.) = 1,,

so Cl is completely determined in this limit. Unfortunately, our concern is with the

opposite extreme of a large 1,/1(1.). Replacing 1. with m in (Al 2) produces a lower bound

of 7,cro. To obtain a nontrivial lower bound, it is necessary to impose some constraint that

restricts the set of functions that f may be selected from.

The type of constraint that is convenient for analysis is obtained by selecting some depth

Z c (0,1,) and some fraction u c (O, 1 ), and stipulate that the fractional contribution to

1(1 ,), from charge collected frotn a depth exceeding Z, is not larger than q i.e.,

[1(1,) -- l(Z)] /l(IJ) < a , (A13)

A bound consistent with (A 13) can be derived by first evaluating (A4) at z = Z and then

usc (Al 3) to eliminate the I(Z) to get

lfx 2 Z, we have the obvious bound l(z) 2 I(Z) 2 (1 -u) 1(1.), Wc now consider the case

where z < Z q’hrec  possibilities to consider are ~ c [O,z], ~ E [z, Z], and ~ E [~,,1 ,]. It can

bc shown from (AS) that all three possibilities result in

( 1 / - 2 / 2 ) 2

‘](2’() s (i -- z/ 2) i ‘](z’()

with the equality applying when ~ =- O. Multiplying the above inequality by YZ and

integrating and then using (A4) and (A14) to substitute for the integrals gives



( 1 , - 2 / 2 ) 2
l(z) > -“”-”-——;:-  (1 - a) 1(1/)> (z / z) (1 – a) I(L) ly 0< z <z,

(lJ--z/2)l

It is convenient to express Z as some multiple y of I(L). Using this notation, the bounds

arc expressed as

I
(1-q z  ~ __z_<y

I(Z)
‘“Y 1(1,) 1(1,) ‘-

-..———
1(1.) 2

( 1 - a )  y ~;j)>y/

(A15)

which provides a nontrivial result in the large 1. limit.

As an example, suppose the set of possible diffllsion length functions, that the bound is to

apply to, is restricted by the constraint that less than 10°/0 of the charge collected from the

infinitely long track is from depths exceeding four times the effective diffusion length. We

then let 1, == m, ct = ~ 0.1, y =- 4, and (Al 5) becomes (4) in Section 3.

A4. ~al.cl]latig.ns  .~J~cd for tlll~.xan~plg,s

The numerical examples in Section 4 were obtained by solving (Al) with f selected to

represent some cases of interest. The easiest way to solve this problem is backwarcls.

]nstead of selecting an f representing a case of interest and attempting to solve (A 1 ) for Cl,

it is easier to select an Q and use (AI) to find out what f is. ‘1’his is a trial and error

method, If the f produced by a selected Q does not approximate the flmction  that wc

would like it to be, it is necessary to try again with another Cl l’hc Cl used for the

numerical examples is given by
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[ [%-j]Q(z)  = B exp(-k  z) +- A W In 1 + exp —~- -

where k, A, W, and 74 are constants satisfying

(A16)

k>O, O <  W <  I / k ,  A>O, Z020, AWln[l-t  exp(zo/W)]<l

but are otherwise arbitrary. The constant El is not arbitrary. It is calculated from

h’= 1- A W ln[l -1 exp(z~  /lV)].

The reciprocal of the diffusion length function used in the examples is f calculated from

(Al ) and (Al 6). The result is a blip, illustrated in the figures in Section 4, which has an

asymptotic value equal to k. “l’he blip center depth is approximately 741 when the blip is

narrow. I’he relationship between blip depth and ~ is more obscure with wider blips, but

the depth increases when 7Q increases. The blip width is most strongly influenced by W and

increases when W increases. “l’he blip amplitude is most strongly influenced by A and

increases when A increases.

The normalized charge l(z) is calculated from (A2) and (Al 6). To evaluate the integral in

(A2), it is necessary to evaluate the integral S defined by

Special values arc given by S(0) = O and S(m)== n2/12. The argument X can have either

sign. When X >0, S can be evaluated from the series

z’ :(_ y--]

S’(X)  . - , 2 -  >- ~ exp(-mX)  ~ X 20
r)l = I ?))
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‘l’he series converges very slowly when X m O, although convergence is faster for larger X.

Calculations used for the examples approximated the series with the first 100 terms for all

X > (). ~’mncation  errors are reduced by adding the terms in reverse order. l’hc series

diverges ifX <0. This case can be treated by first converting the argument to a positive

number using the identity

s’(x) =- -s(-x) - X2 /2

and then using the series to evaluate the term containing the positive argument.
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FIGURE CAPTIONS

Figure  1: Plots of the uniform approximation, the upper bound (no restrictions), and the

lower bound (subject to (3)).

l~igure 2: l“he assumed I.I) in (a) produces the exact 1 in (b), which is compared to the

uniform approximation in (b).

Figure 3: ‘I’he assumed 1,1) in (a) produces the exact 1 in (b), which is compared to the

uniform approximation in (b).

l~igure 4: The assumed 1,1) in (a) produces the exact 1 in (b), which is compared to the

uniform approximation in (b).

l;igure  5: ~’he assumed I,D in (a) produces the exact 1 in (b), which is compared to the

uniform approximation in (b).

l;igurc  6: The assumed 1.11 in (a) produces the exact 1 in (b), which is compared to the

uniform approximation in (b).

l’igure Al: Illustration ofthc curvature of IJ(z,Q  when plotted against ~ with z fixed. ‘1’hc

J 1 curve (solid) is bounded above by the chord connecting the end points (upper dashed

line), and bounded below by any tangent line, such as the lower dashed line shown,
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